ICAB-calcul : Différence entre versions

De ICABWIKI
Aller à : navigation, rechercher
 
(2 révisions intermédiaires par le même utilisateur non affichées)
Ligne 2 : Ligne 2 :
 
'''FAQ Support ICAB'''
 
'''FAQ Support ICAB'''
 
{{FAQ support ICAB}}
 
{{FAQ support ICAB}}
 
+
[[Category:ICAB-FAQ]]
 +
[[Category:ICAB-manuel]]
  
 
== Les déplacements et/ou rotations sont excessifs ==
 
== Les déplacements et/ou rotations sont excessifs ==
Ligne 28 : Ligne 29 :
 
'''Vérifier les masses'''
 
'''Vérifier les masses'''
 
Pour contrôler rapidement la masse de la structure, utiliser la commande "Calcul, Devis". La masse et la position du centre de gravité sont indiquées directement dans la fenêtre de la boîte de dialogue.
 
Pour contrôler rapidement la masse de la structure, utiliser la commande "Calcul, Devis". La masse et la position du centre de gravité sont indiquées directement dans la fenêtre de la boîte de dialogue.
 +
 +
'''Vérifier le champ de gravité'''
 +
Un champ de gravité peut être défini plusieurs fois; dans le cas où le champ de gravité Gz est défini dans le cas de charge 0 et cas de charge 1, chaque élément aura pour poids M.(g0 + g1) pour tout calcul où est inclus de le cas de charge 1.
 +
Il est déconseillé de placer le champ de gravité dans le cas de charge 0 car il sera toujours pris en compte sans possibilité de pondération. Il se cumule avec tout champ de gravité défini dans un autre cas de charge.
  
 
'''Vérifier la descente de charge'''
 
'''Vérifier la descente de charge'''
Ligne 40 : Ligne 45 :
  
 
Vérifier les unités
 
Vérifier les unités
 
  
 
== Matrice probablement non inversible ==
 
== Matrice probablement non inversible ==

Version actuelle datée du 1 janvier 2013 à 20:09

FAQ Support ICAB Support du logiciel ICAB

Configuration, Installation Capacités du logiciel modélisation calcul

Les déplacements et/ou rotations sont excessifs

Les déplacements en translation ou rotation excessifs proviennent de l'effet de structure flottante.

- vérifier les conditions limites en déplacement imposée pour garantir le blocage selon les trois translations X, Y, Z et trois rotations RX, RY, RZ

- vérifier qu'il n'y ait pas de structure isolé non rattachée à la structure ayant les blocages.

- pour des coques, gardez à l'esprit qu'un noeud n'a que 5 degrés de liberté: 3 translations et 2 rotations RX, RY dans le repère local de la coque de la surface neutre. La rotation RZ selon l'axe perpendiculaire à la surface neutre ne peut servir de blocage. Ainsi, un élément de type poutre dont une extrémité arrive en un seul noeud d'une surface de coque ne peut être considéré comme encastré sur la coque puisque la rotation RZ perpendiculaire à la coque ne contraint pas les rotations de la poutre; par exemple la torsion pour une poutre perpendiculaire à la coque reste libre dans cette liaison partielle. Pour encastrer efficacement l'extrémité d'une poutre sur une coque, il faut ajouter des liaisons entre l'extrémité de la poutre et des noeuds sur la surface.


Les charges permanentes ne sont pas correctes

Si vous estimez que les charges permanentes ne sont pas correctes,

Les charges permanentes (cas de charge "G Poids propre") incluent les charges appliquées concentrées, linéiques, pressions mais également la somme des produits Me.G, où Me est la masse de chaque élément et G le champ de gravité défini dans les chargements "Grav./Accélération".

La masse de chaque élément est calculée comme étant le produit de la densité du matériau (paramètre DEN des propriétés du matériau) et du volume (pour une poutre AR.L, AR étant l'aire de la section, L la longueur de la poutre).

Vérifier les masses Pour contrôler rapidement la masse de la structure, utiliser la commande "Calcul, Devis". La masse et la position du centre de gravité sont indiquées directement dans la fenêtre de la boîte de dialogue.

Vérifier le champ de gravité Un champ de gravité peut être défini plusieurs fois; dans le cas où le champ de gravité Gz est défini dans le cas de charge 0 et cas de charge 1, chaque élément aura pour poids M.(g0 + g1) pour tout calcul où est inclus de le cas de charge 1. Il est déconseillé de placer le champ de gravité dans le cas de charge 0 car il sera toujours pris en compte sans possibilité de pondération. Il se cumule avec tout champ de gravité défini dans un autre cas de charge.

Vérifier la descente de charge Utiliser la commande "Résultats, extraire une note de calcul", pour lister les réactions par cas de charge. Le tableau de synthèse regroupe la somme des réactions ce qui permet de vérifier le total des charges.

Si ces indications ne sont pas cohérentes, par exemple avec des valeurs très grandes ou très petites, la source d'erreur probable est un problème d'unités.

Indication des unités Lors de l'ouverture d'un projet ICAB, l'utilisateur choisit un système d'unités. Ensuite les valeurs numériques introduites par l'utilisateur doivent être cohérentes avec le système d'unités choisies. ATTENTION: un changement d'unités ultérieurs requiert de modifier les valeurs déjà saisies, notamment les caractéristiques des propriétés physiques et matériaux.

Vérifier les unités

Matrice probablement non inversible

Matrice probablement non inversible ?

Le problème est similaire à celui de la matrice "non inversible". Dans ce cas, il existe dans la structure un rapport excessif entre le plus grande et la plus faible rigidité, mais la résolution n'est pas arrêtée.

Il est alors possible d'obtenir la déformée. Un ou plusieurs noeuds ont probablement des déplacements excessifs, ce qui permet alors de localiser la partie de la structure qui n'est pas correcte.

En pratique: pour valider ce type de calcul: - vérifier le résidu indiqué dans le listing de sortie; un résidu nul, calculé après les déplacements, traduit l'équilibre des efforts entre les actions sur la structure et les réactions, - vérifier les déplacements, flèches, et rotation de fibres neutres (cas d'une poutre qui tourne sur elle-même)


Matrice non inversible

Matrice non inversible, d'où vient cette impossibilité de calcul ?

Le message "matrice non inversible: vérifiez les conditions limites et les rigidités" apparait lors de la phase d'inversion de la matrice de rigidité globale, formée par l'assemblage des matrice de rigidité locales des éléments. L'algorithme d'inversion ne peut poursuivre car un singularité numerique (terme nul ou presque) a été rencontrée.

Il s'agit du phénomène de "structure flottante": Une partie de la structure n'est pas convenablement maintenue par les points d'appuis ou n'est pas suffisamment assemblée au reste de la structure.

Pour un corps, il faut fixer au moins 6 degrés de liberté; par exemple, bloquer au moins un noeud en translation (X, Y, Z) et rotation (RX, RY, RZ) , ou bien trois noeuds non alignés en translation (trépied).

Ce problème numérique peut également provenir de caractéristiques mécaniques nulles, comme le module d'Young E=0 pour un matériau ou l'un des paramètres de poutre nul (Aire A=, inerties Iyy=0, Izz=0, torsion TC=0).